Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Range-Net: A High Precision Streaming SVD for Big Data Applications (2010.14226v6)

Published 27 Oct 2020 in math.NA, cs.AI, cs.LG, and cs.NA

Abstract: In a Big Data setting computing the dominant SVD factors is restrictive due to the main memory requirements. Recently introduced streaming Randomized SVD schemes work under the restrictive assumption that the singular value spectrum of the data has exponential decay. This is seldom true for any practical data. Although these methods are claimed to be applicable to scientific computations due to associated tail-energy error bounds, the approximation errors in the singular vectors and values are high when the aforementioned assumption does not hold. Furthermore from a practical perspective, oversampling can still be memory intensive or worse can exceed the feature dimension of the data. To address these issues, we present Range-Net as an alternative to randomized SVD that satisfies the tail-energy lower bound given by Eckart-Young-Mirsky (EYM) theorem. Range-Net is a deterministic two-stage neural optimization approach with random initialization, where the main memory requirement depends explicitly on the feature dimension and desired rank, independent of the sample dimension. The data samples are read in a streaming setting with the network minimization problem converging to the desired rank-r approximation. Range-Net is fully interpretable where all the network outputs and weights have a specific meaning. We provide theoretical guarantees that Range-Net extracted SVD factors satisfy EYM tail-energy lower bound at machine precision. Our numerical experiments on real data at various scales confirms this bound. A comparison against the state of the art streaming Randomized SVD shows that Range-Net accuracy is better by six orders of magnitude while being memory efficient.

Citations (2)

Summary

We haven't generated a summary for this paper yet.