Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Degree 2 cohomological invariants of linear algebraic groups (2010.13842v3)

Published 26 Oct 2020 in math.AG

Abstract: The paper deals with the cohomological invariants of smooth and connected linear algebraic groups over an arbitrary field. More precisely, we study degree $2$ invariants with coefficients $\mathbb{Q}/\mathbb{Z}(1)$, that is invariants taking values in the Brauer group. Our main tool is the \'etale cohomology of sheaves on simplicial schemes. We get a description of these invariants for \emph{every} smooth and connected linear groups, in particular for non reductive groups over an imperfect field.

Summary

We haven't generated a summary for this paper yet.