Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Provable Memorization via Deep Neural Networks using Sub-linear Parameters (2010.13363v2)

Published 26 Oct 2020 in cs.LG

Abstract: It is known that $O(N)$ parameters are sufficient for neural networks to memorize arbitrary $N$ input-label pairs. By exploiting depth, we show that $O(N{2/3})$ parameters suffice to memorize $N$ pairs, under a mild condition on the separation of input points. In particular, deeper networks (even with width $3$) are shown to memorize more pairs than shallow networks, which also agrees with the recent line of works on the benefits of depth for function approximation. We also provide empirical results that support our theoretical findings.

Citations (31)

Summary

We haven't generated a summary for this paper yet.