Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

EDNet: Efficient Disparity Estimation with Cost Volume Combination and Attention-based Spatial Residual (2010.13338v4)

Published 26 Oct 2020 in cs.CV

Abstract: Existing state-of-the-art disparity estimation works mostly leverage the 4D concatenation volume and construct a very deep 3D convolution neural network (CNN) for disparity regression, which is inefficient due to the high memory consumption and slow inference speed. In this paper, we propose a network named EDNet for efficient disparity estimation. Firstly, we construct a combined volume which incorporates contextual information from the squeezed concatenation volume and feature similarity measurement from the correlation volume. The combined volume can be next aggregated by 2D convolutions which are faster and require less memory than 3D convolutions. Secondly, we propose an attention-based spatial residual module to generate attention-aware residual features. The attention mechanism is applied to provide intuitive spatial evidence about inaccurate regions with the help of error maps at multiple scales and thus improve the residual learning efficiency. Extensive experiments on the Scene Flow and KITTI datasets show that EDNet outperforms the previous 3D CNN based works and achieves state-of-the-art performance with significantly faster speed and less memory consumption.

Summary

We haven't generated a summary for this paper yet.