Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Dark and Bright Channel Prior Guided Deep Network for Retinal Image Quality Assessment (2010.13313v2)

Published 26 Oct 2020 in eess.IV and cs.CV

Abstract: Retinal image quality assessment is an essential task in the diagnosis of retinal diseases. Recently, there are emerging deep models to grade quality of retinal images. Current state-of-the-arts either directly transfer classification networks originally designed for natural images to quality classification of retinal images or introduce extra image quality priors via multiple CNN branches or independent CNNs. This paper proposes a dark and bright channel prior guided deep network for retinal image quality assessment called GuidedNet. Specifically, the dark and bright channel priors are embedded into the start layer of network to improve the discriminate ability of deep features. In addition, we re-annotate a new retinal image quality dataset called RIQA-RFMiD for further validation. Experimental results on a public retinal image quality dataset Eye-Quality and our re-annotated dataset RIQA-RFMiD demonstrate the effectiveness of the proposed GuidedNet.

Citations (7)

Summary

We haven't generated a summary for this paper yet.