Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Variational Properties Of The Second Eigenvalue Of The Conformal Laplacian (2010.13210v2)

Published 25 Oct 2020 in math.DG and math.AP

Abstract: Let $(Mn,g)$ be a closed Riemannian manifold of dimension $n\ge 3$. Assume $[g]$ is a conformal class for which the Conformal Laplacian $L_g$ has at least two negative eigenvalues. We show the existence of a (generalized) metric that maximizes the second eigenvalue of $L_g$ over all conformal metrics (the first eigenvalue is maximized by the Yamabe metric). We also show that a maximal metric defines either a nodal solution of the Yamabe equation, or a harmonic map to a sphere. Moreover, we construct examples of each possibility.

Summary

We haven't generated a summary for this paper yet.