Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How to Make Deep RL Work in Practice (2010.13083v2)

Published 25 Oct 2020 in cs.LG and cs.RO

Abstract: In recent years, challenging control problems became solvable with deep reinforcement learning (RL). To be able to use RL for large-scale real-world applications, a certain degree of reliability in their performance is necessary. Reported results of state-of-the-art algorithms are often difficult to reproduce. One reason for this is that certain implementation details influence the performance significantly. Commonly, these details are not highlighted as important techniques to achieve state-of-the-art performance. Additionally, techniques from supervised learning are often used by default but influence the algorithms in a reinforcement learning setting in different and not well-understood ways. In this paper, we investigate the influence of certain initialization, input normalization, and adaptive learning techniques on the performance of state-of-the-art RL algorithms. We make suggestions which of those techniques to use by default and highlight areas that could benefit from a solution specifically tailored to RL.

Citations (9)

Summary

We haven't generated a summary for this paper yet.