Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inter-Series Attention Model for COVID-19 Forecasting (2010.13006v2)

Published 25 Oct 2020 in cs.LG and stat.ML

Abstract: COVID-19 pandemic has an unprecedented impact all over the world since early 2020. During this public health crisis, reliable forecasting of the disease becomes critical for resource allocation and administrative planning. The results from compartmental models such as SIR and SEIR are popularly referred by CDC and news media. With more and more COVID-19 data becoming available, we examine the following question: Can a direct data-driven approach without modeling the disease spreading dynamics outperform the well referred compartmental models and their variants? In this paper, we show the possibility. It is observed that as COVID-19 spreads at different speed and scale in different geographic regions, it is highly likely that similar progression patterns are shared among these regions within different time periods. This intuition lead us to develop a new neural forecasting model, called Attention Crossing Time Series (\textbf{ACTS}), that makes forecasts via comparing patterns across time series obtained from multiple regions. The attention mechanism originally developed for natural language processing can be leveraged and generalized to materialize this idea. Among 13 out of 18 testings including forecasting newly confirmed cases, hospitalizations and deaths, \textbf{ACTS} outperforms all the leading COVID-19 forecasters highlighted by CDC.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Xiaoyong Jin (9 papers)
  2. Yu-Xiang Wang (124 papers)
  3. Xifeng Yan (52 papers)
Citations (36)