Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Beyond VQA: Generating Multi-word Answer and Rationale to Visual Questions (2010.12852v2)

Published 24 Oct 2020 in cs.CV and cs.AI

Abstract: Visual Question Answering is a multi-modal task that aims to measure high-level visual understanding. Contemporary VQA models are restrictive in the sense that answers are obtained via classification over a limited vocabulary (in the case of open-ended VQA), or via classification over a set of multiple-choice-type answers. In this work, we present a completely generative formulation where a multi-word answer is generated for a visual query. To take this a step forward, we introduce a new task: ViQAR (Visual Question Answering and Reasoning), wherein a model must generate the complete answer and a rationale that seeks to justify the generated answer. We propose an end-to-end architecture to solve this task and describe how to evaluate it. We show that our model generates strong answers and rationales through qualitative and quantitative evaluation, as well as through a human Turing Test.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Radhika Dua (9 papers)
  2. Sai Srinivas Kancheti (5 papers)
  3. Vineeth N Balasubramanian (96 papers)
Citations (20)