Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Collaborative Machine Learning with Incentive-Aware Model Rewards (2010.12797v1)

Published 24 Oct 2020 in cs.LG, cs.GT, cs.MA, and stat.ML

Abstract: Collaborative ML is an appealing paradigm to build high-quality ML models by training on the aggregated data from many parties. However, these parties are only willing to share their data when given enough incentives, such as a guaranteed fair reward based on their contributions. This motivates the need for measuring a party's contribution and designing an incentive-aware reward scheme accordingly. This paper proposes to value a party's reward based on Shapley value and information gain on model parameters given its data. Subsequently, we give each party a model as a reward. To formally incentivize the collaboration, we define some desirable properties (e.g., fairness and stability) which are inspired by cooperative game theory but adapted for our model reward that is uniquely freely replicable. Then, we propose a novel model reward scheme to satisfy fairness and trade off between the desirable properties via an adjustable parameter. The value of each party's model reward determined by our scheme is attained by injecting Gaussian noise to the aggregated training data with an optimized noise variance. We empirically demonstrate interesting properties of our scheme and evaluate its performance using synthetic and real-world datasets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Rachael Hwee Ling Sim (8 papers)
  2. Yehong Zhang (16 papers)
  3. Mun Choon Chan (8 papers)
  4. Bryan Kian Hsiang Low (77 papers)
Citations (112)

Summary

We haven't generated a summary for this paper yet.