Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Fine-Grained Cross Modality Excitement for Speech Emotion Recognition (2010.12733v2)

Published 24 Oct 2020 in cs.SD and eess.AS

Abstract: Speech emotion recognition is a challenging task because the emotion expression is complex, multimodal and fine-grained. In this paper, we propose a novel multimodal deep learning approach to perform fine-grained emotion recognition from real-life speeches. We design a temporal alignment mean-max pooling mechanism to capture the subtle and fine-grained emotions implied in every utterance. In addition, we propose a cross modality excitement module to conduct sample-specific adjustment on cross modality embeddings and adaptively recalibrate the corresponding values by its aligned latent features from the other modality. Our proposed model is evaluated on two well-known real-world speech emotion recognition datasets. The results demonstrate that our approach is superior on the prediction tasks for multimodal speech utterances, and it outperforms a wide range of baselines in terms of prediction accuracy. Further more, we conduct detailed ablation studies to show that our temporal alignment mean-max pooling mechanism and cross modality excitement significantly contribute to the promising results. In order to encourage the research reproducibility, we make the code publicly available at \url{https://github.com/tal-ai/FG_CME.git}.

Citations (26)

Summary

We haven't generated a summary for this paper yet.