Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the quantumness of multiparameter estimation problems for qubit systems (2010.12630v1)

Published 23 Oct 2020 in quant-ph

Abstract: The estimation of more than one parameter in quantum mechanics is a fundamental problem with relevant practical applications. In fact, the ultimate limits in the achievable estimation precision are ultimately linked with the non-commutativity of different observables, a peculiar property of quantum mechanics. We here consider several estimation problems for qubit systems and evaluate the corresponding quantumness R, a measure that has been recently introduced in order to quantify how much incompatible are the parameters to be estimated. In particular, R is an upper bound for the renormalized difference between the (asymptotically achievable) Holevo bound and the SLD Cram\'er-Rao bound (i.e. the matrix generalization of the single-parameter quantum Cram\'er-Rao bound). For all the estimation problems considered, we evaluate the quantumness R and, in order to better understand its usefulness in characterizing a multiparameter quantum statistical model, we compare it with the renormalized difference between the Holevo and the SLD-bound. Our results give evidence that R is a useful quantity to characterize multiparameter estimation problems, as for several quantum statistical model it is equal to the difference between the bounds and, in general, their behaviour qualitatively coincide. On the other hand, we also find evidence that for certain quantum statistical models the bound is not in tight, and thus R may overestimate the degree of quantum incompatibility between parameters.

Summary

We haven't generated a summary for this paper yet.