Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Legal Document Classification: An Application to Law Area Prediction of Petitions to Public Prosecution Service (2010.12533v1)

Published 13 Oct 2020 in cs.IR and cs.LG

Abstract: In recent years, there has been an increased interest in the application of NLP to legal documents. The use of convolutional and recurrent neural networks along with word embedding techniques have presented promising results when applied to textual classification problems, such as sentiment analysis and topic segmentation of documents. This paper proposes the use of NLP techniques for textual classification, with the purpose of categorizing the descriptions of the services provided by the Public Prosecutor's Office of the State of Paran\'a to the population in one of the areas of law covered by the institution. Our main goal is to automate the process of assigning petitions to their respective areas of law, with a consequent reduction in costs and time associated with such process while allowing the allocation of human resources to more complex tasks. In this paper, we compare different approaches to word representations in the aforementioned task: including document-term matrices and a few different word embeddings. With regards to the classification models, we evaluated three different families: linear models, boosted trees and neural networks. The best results were obtained with a combination of Word2Vec trained on a domain-specific corpus and a Recurrent Neural Network (RNN) architecture (more specifically, LSTM), leading to an accuracy of 90\% and F1-Score of 85\% in the classification of eighteen categories (law areas).

Citations (19)

Summary

We haven't generated a summary for this paper yet.