Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-driven Regularized Inference Privacy (2010.12346v1)

Published 10 Oct 2020 in cs.CR, cs.IT, cs.LG, and math.IT

Abstract: Data is used widely by service providers as input to inference systems to perform decision making for authorized tasks. The raw data however allows a service provider to infer other sensitive information it has not been authorized for. We propose a data-driven inference privacy preserving framework to sanitize data so as to prevent leakage of sensitive information that is present in the raw data, while ensuring that the sanitized data is still compatible with the service provider's legacy inference system. We develop an inference privacy framework based on the variational method and include maximum mean discrepancy and domain adaption as techniques to regularize the domain of the sanitized data to ensure its legacy compatibility. However, the variational method leads to weak privacy in cases where the underlying data distribution is hard to approximate. It may also face difficulties when handling continuous private variables. To overcome this, we propose an alternative formulation of the privacy metric using maximal correlation and we present empirical methods to estimate it. Finally, we develop a deep learning model as an example of the proposed inference privacy framework. Numerical experiments verify the feasibility of our approach.

Citations (3)

Summary

We haven't generated a summary for this paper yet.