Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reducing Bias in Modeling Real-world Password Strength via Deep Learning and Dynamic Dictionaries (2010.12269v5)

Published 23 Oct 2020 in cs.CR and cs.LG

Abstract: Password security hinges on an in-depth understanding of the techniques adopted by attackers. Unfortunately, real-world adversaries resort to pragmatic guessing strategies such as dictionary attacks that are inherently difficult to model in password security studies. In order to be representative of the actual threat, dictionary attacks must be thoughtfully configured and tuned. However, this process requires a domain-knowledge and expertise that cannot be easily replicated. The consequence of inaccurately calibrating dictionary attacks is the unreliability of password security analyses, impaired by a severe measurement bias. In the present work, we introduce a new generation of dictionary attacks that is consistently more resilient to inadequate configurations. Requiring no supervision or domain-knowledge, this technique automatically approximates the advanced guessing strategies adopted by real-world attackers. To achieve this: (1) We use deep neural networks to model the proficiency of adversaries in building attack configurations. (2) Then, we introduce dynamic guessing strategies within dictionary attacks. These mimic experts' ability to adapt their guessing strategies on the fly by incorporating knowledge on their targets. Our techniques enable more robust and sound password strength estimates within dictionary attacks, eventually reducing overestimation in modeling real-world threats in password security. Code available: https://github.com/TheAdamProject/adams

Citations (28)

Summary

We haven't generated a summary for this paper yet.