Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Simple Neighborhood Representative Pre-processing Boosts Outlier Detectors (2010.12061v3)

Published 11 Oct 2020 in cs.LG and cs.CV

Abstract: Over the decades, traditional outlier detectors have ignored the group-level factor when calculating outlier scores for objects in data by evaluating only the object-level factor, failing to capture the collective outliers. To mitigate this issue, we present a method called neighborhood representative (NR), which empowers all the existing outlier detectors to efficiently detect outliers, including collective outliers, while maintaining their computational integrity. It achieves this by selecting representative objects, scoring these objects, then applies the score of the representative objects to its collective objects. Without altering existing detectors, NR is compatible with existing detectors, while improving performance on real world datasets with +8% (0.72 to 0.78 AUC) relative to state-of-the-art outlier detectors.

Citations (1)

Summary

We haven't generated a summary for this paper yet.