Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Data Augmentation with Naive Augmentation and without Unlabeled Data (2010.11966v1)

Published 22 Oct 2020 in cs.CL and cs.LG

Abstract: Unsupervised Data Augmentation (UDA) is a semi-supervised technique that applies a consistency loss to penalize differences between a model's predictions on (a) observed (unlabeled) examples; and (b) corresponding 'noised' examples produced via data augmentation. While UDA has gained popularity for text classification, open questions linger over which design decisions are necessary and over how to extend the method to sequence labeling tasks. This method has recently gained traction for text classification. In this paper, we re-examine UDA and demonstrate its efficacy on several sequential tasks. Our main contribution is an empirical study of UDA to establish which components of the algorithm confer benefits in NLP. Notably, although prior work has emphasized the use of clever augmentation techniques including back-translation, we find that enforcing consistency between predictions assigned to observed and randomly substituted words often yields comparable (or greater) benefits compared to these complex perturbation models. Furthermore, we find that applying its consistency loss affords meaningful gains without any unlabeled data at all, i.e., in a standard supervised setting. In short: UDA need not be unsupervised, and does not require complex data augmentation to be effective.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. David Lowell (2 papers)
  2. Brian E. Howard (1 paper)
  3. Byron C. Wallace (82 papers)
  4. Zachary C. Lipton (137 papers)
Citations (22)