Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic analysis of extended two-dimensional narrow capture problems (2010.11885v1)

Published 22 Oct 2020 in cond-mat.stat-mech and math.PR

Abstract: In this paper we extend our recent work on two-dimensional (2D) diffusive search-and-capture processes with multiple small targets (narrow capture problems) by considering an asymptotic expansion of the Laplace transformed probability flux into each target. The latter determines the distribution of arrival or capture times into an individual target, conditioned on the set of events that result in capture by that target. A characteristic feature of strongly localized perturbations in 2D is that matched asymptotics generates a series expansion in $\nu=-1/\ln \epsilon$ rather than $\epsilon$, $0<\epsilon\ll 1$, where $\epsilon$ specifies the size of each target relative to the size of the search domain. Moreover, it is possible to sum over all logarithmic terms non-perturbatively. We exploit this fact to show how a Taylor expansion in the Laplace variable $s$ for fixed $\nu$ provides an efficient method for obtaining corresponding asymptotic expansions of the splitting probabilities and moments of the conditional FPT densities. We then use our asymptotic analysis to derive new results for two major extensions of the classical narrow capture problem: optimal search strategies under stochastic resetting, and the accumulation of target resources under multiple rounds of search-and-capture.

Summary

We haven't generated a summary for this paper yet.