Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ConVEx: Data-Efficient and Few-Shot Slot Labeling (2010.11791v2)

Published 22 Oct 2020 in cs.CL

Abstract: We propose ConVEx (Conversational Value Extractor), an efficient pretraining and fine-tuning neural approach for slot-labeling dialog tasks. Instead of relying on more general pretraining objectives from prior work (e.g., LLMing, response selection), ConVEx's pretraining objective, a novel pairwise cloze task using Reddit data, is well aligned with its intended usage on sequence labeling tasks. This enables learning domain-specific slot labelers by simply fine-tuning decoding layers of the pretrained general-purpose sequence labeling model, while the majority of the pretrained model's parameters are kept frozen. We report state-of-the-art performance of ConVEx across a range of diverse domains and data sets for dialog slot-labeling, with the largest gains in the most challenging, few-shot setups. We believe that ConVEx's reduced pretraining times (i.e., only 18 hours on 12 GPUs) and cost, along with its efficient fine-tuning and strong performance, promise wider portability and scalability for data-efficient sequence-labeling tasks in general.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Matthew Henderson (13 papers)
  2. Ivan Vulić (130 papers)
Citations (37)

Summary

We haven't generated a summary for this paper yet.