Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Network-based Acoustic Vehicle Counting (2010.11659v2)

Published 22 Oct 2020 in cs.SD, cs.LG, and eess.AS

Abstract: This paper addresses acoustic vehicle counting using one-channel audio. We predict the pass-by instants of vehicles from local minima of clipped vehicle-to-microphone distance. This distance is predicted from audio using a two-stage (coarse-fine) regression, with both stages realised via neural networks (NNs). Experiments show that the NN-based distance regression outperforms by far the previously proposed support vector regression. The $ 95\% $ confidence interval for the mean of vehicle counting error is within $[0.28\%, -0.55\%]$. Besides the minima-based counting, we propose a deep learning counting that operates on the predicted distance without detecting local minima. Although outperformed in accuracy by the former approach, deep counting has a significant advantage in that it does not depend on minima detection parameters. Results also show that removing low frequencies in features improves the counting performance.

Citations (8)

Summary

We haven't generated a summary for this paper yet.