Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Compressed Sensing Matrices Breaking the Square-Root Bottleneck (2010.11179v2)

Published 21 Oct 2020 in cs.IT, math.CO, math.IT, and math.NT

Abstract: Compressed sensing is a celebrated framework in signal processing and has many practical applications. One of challenging problems in compressed sensing is to construct deterministic matrices having restricted isometry property (RIP). So far, there are only a few publications providing deterministic RIP matrices beating the square-root bottleneck on the sparsity level. In this paper, we investigate RIP of certain matrices defined by higher power residues modulo primes. Moreover, we prove that the widely-believed generalized Paley graph conjecture implies that these matrices have RIP breaking the square-root bottleneck.

Citations (2)

Summary

We haven't generated a summary for this paper yet.