Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Euclidean formulation of relativistic quantum mechanics of N particles (2010.10944v1)

Published 20 Oct 2020 in nucl-th, hep-th, and quant-ph

Abstract: A Euclidean formulation of relativistic quantum mechanics for systems of a finite number of degrees of freedom is discussed. Relativistic treatments of quantum theory are needed to study hadronic systems at sub-hadronic distance scales. While direct interaction approaches to relativistic quantum mechanics have proved to be useful, they have two disadvantages. One is that cluster properties are difficult to realize for systems of more than two particles. The second is that the relation to quantum field theories is indirect. Euclidean formulations of relativistic quantum mechanics provide an alternative representation that does not have these difficulties. More surprising, the theory can be formulated entirely in the Euclidean representation without the need for analytic continuation. In this work a Euclidean representation of a relativistic $N$-particle system is discussed. Kernels for systems of N free particles of any spin are given and shown to be reflection positive. Explicit formulas for generators of the Poincar\'e group for any spin are constructed and shown to be self-adjoint on the Euclidean representation of the Hilbert space. The structure of correlations that preserve both the Euclidean covariance and reflection positivity is discussed.

Summary

We haven't generated a summary for this paper yet.