Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Experimental Automatic Calibration of a Semi-Active Suspension Controller via Bayesian Optimization (2010.10831v1)

Published 21 Oct 2020 in eess.SY and cs.SY

Abstract: The End-of-Line (EoL) calibration of semi-active suspension systems for road vehicles is usually a critical and expensive task, needing a team of vehicle and control experts as well as many hours of professional driving. In this paper, we propose a purely data-based tuning method enabling the automatic calibration of the parameters of a proprietary suspension controller by relying on little experimental time and exploiting Bayesian Optimization tools. A detailed methodology on how to select the most critical degrees of freedom of the algorithm is also provided. The effectiveness of the proposed approach is assessed on a commercial multi-body simulator as well as on a real car.

Citations (16)

Summary

We haven't generated a summary for this paper yet.