Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

UFO$^2$: A Unified Framework towards Omni-supervised Object Detection (2010.10804v1)

Published 21 Oct 2020 in cs.CV, cs.AI, and cs.LG

Abstract: Existing work on object detection often relies on a single form of annotation: the model is trained using either accurate yet costly bounding boxes or cheaper but less expressive image-level tags. However, real-world annotations are often diverse in form, which challenges these existing works. In this paper, we present UFO$2$, a unified object detection framework that can handle different forms of supervision simultaneously. Specifically, UFO$2$ incorporates strong supervision (e.g., boxes), various forms of partial supervision (e.g., class tags, points, and scribbles), and unlabeled data. Through rigorous evaluations, we demonstrate that each form of label can be utilized to either train a model from scratch or to further improve a pre-trained model. We also use UFO$2$ to investigate budget-aware omni-supervised learning, i.e., various annotation policies are studied under a fixed annotation budget: we show that competitive performance needs no strong labels for all data. Finally, we demonstrate the generalization of UFO$2$, detecting more than 1,000 different objects without bounding box annotations.

Citations (33)

Summary

We haven't generated a summary for this paper yet.