Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Biometric Identification Systems With Noisy Enrollment for Gaussian Source (2010.10799v1)

Published 21 Oct 2020 in cs.IT, cs.CR, and math.IT

Abstract: In the present paper, we investigate the fundamental trade-off of identification, secrecy, storage, and privacy-leakage rates in biometric identification systems for hidden or remote Gaussian sources. We introduce a technique for deriving the capacity region of these rates by converting the system to one where the data flow is in one-way direction. Also, we provide numerical calculations of three different examples for the generated-secret model. The numerical results imply that it seems hard to achieve both high secrecy and small privacy-leakage rates simultaneously. In addition, as special cases, the characterization coincides with several known results in previous studies.

Citations (6)

Summary

We haven't generated a summary for this paper yet.