Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Worst-case sensitivity (2010.10794v1)

Published 21 Oct 2020 in econ.EM, cs.SY, eess.SY, q-fin.RM, and stat.ML

Abstract: We introduce the notion of Worst-Case Sensitivity, defined as the worst-case rate of increase in the expected cost of a Distributionally Robust Optimization (DRO) model when the size of the uncertainty set vanishes. We show that worst-case sensitivity is a Generalized Measure of Deviation and that a large class of DRO models are essentially mean-(worst-case) sensitivity problems when uncertainty sets are small, unifying recent results on the relationship between DRO and regularized empirical optimization with worst-case sensitivity playing the role of the regularizer. More generally, DRO solutions can be sensitive to the family and size of the uncertainty set, and reflect the properties of its worst-case sensitivity. We derive closed-form expressions of worst-case sensitivity for well known uncertainty sets including smooth $\phi$-divergence, total variation, "budgeted" uncertainty sets, uncertainty sets corresponding to a convex combination of expected value and CVaR, and the Wasserstein metric. These can be used to select the uncertainty set and its size for a given application.

Citations (4)

Summary

We haven't generated a summary for this paper yet.