Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A statistical framework for model-based inverse problems in ultrasound elastography (2010.10729v1)

Published 21 Oct 2020 in eess.IV and cs.CE

Abstract: Model-based computational elasticity imaging of tissues can be posed as solving an inverse problem over finite elements spanning the displacement image. As most existing quasi-static elastography methods count on deterministic formulations of the forward model resulting in a constrained optimization problem, the impact of displacement observation errors has not been well addressed. To this end, we propose a new statistical technique that leads to a unified optimization problem for elasticity imaging. Our statistical model takes the imperfect nature of the displacement measurements into account, and leads to an observation model for the Young's modulus that involves signal dependent colored noise. To solve the resulting regularized optimization problem, we propose a fixed-point algorithm that leverages proximal splitting methods. Preliminary qualitative and quantitative results demonstrate the effectiveness and robustness of the proposed methodology.

Citations (11)

Summary

We haven't generated a summary for this paper yet.