Modeling Data Movement Performance on Heterogeneous Architectures (2010.10378v3)
Abstract: The cost of data movement on parallel systems varies greatly with machine architecture, job partition, and nearby jobs. Performance models that accurately capture the cost of data movement provide a tool for analysis, allowing for communication bottlenecks to be pinpointed. Modern heterogeneous architectures yield increased variance in data movement as there are a number of viable paths for inter-GPU communication. In this paper, we present performance models for the various paths of inter-node communication on modern heterogeneous architectures, including the trade-off between GPUDirect communication and copying to CPUs. Furthermore, we present a novel optimization for inter-node communication based on these models, utilizing all available CPU cores per node. Finally, we show associated performance improvements for MPI collective operations.