Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Performance of Dual-Augmented Lagrangian Method and Common Spatial Patterns applied in classification of Motor-Imagery BCI (2010.10359v1)

Published 13 Oct 2020 in eess.SP, cs.AI, cs.LG, and cs.NE

Abstract: Motor-imagery based brain-computer interfaces (MI-BCI) have the potential to become ground-breaking technologies for neurorehabilitation, the reestablishment of non-muscular communication and commands for patients suffering from neuronal disorders and disabilities, but also outside of clinical practice, for video game control and other entertainment purposes. However, due to the noisy nature of the used EEG signal, reliable BCI systems require specialized procedures for features optimization and extraction. This paper compares the two approaches, the Common Spatial Patterns with Linear Discriminant Analysis classifier (CSP-LDA), widely used in BCI for extracting features in Motor Imagery (MI) tasks, and the Dual-Augmented Lagrangian (DAL) framework with three different regularization methods: group sparsity with row groups (DAL-GLR), dual-spectrum (DAL-DS) and l1-norm regularization (DAL-L1). The test has been performed on 7 healthy subjects performing 5 BCI-MI sessions each. The preliminary results show that DAL-GLR method outperforms standard CSP-LDA, presenting 6.9% lower misclassification error (p-value = 0.008) and demonstrate the advantage of DAL framework for MI-BCI.

Citations (2)

Summary

We haven't generated a summary for this paper yet.