Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Leveraging the structure of musical preference in content-aware music recommendation (2010.10276v2)

Published 20 Oct 2020 in cs.IR, cs.SD, and eess.AS

Abstract: State-of-the-art music recommendation systems are based on collaborative filtering, which predicts a user's interest from his listening habits and similarities with other users' profiles. These approaches are agnostic to the song content, and therefore face the cold-start problem: they cannot recommend novel songs without listening history. To tackle this issue, content-aware recommendation incorporates information about the songs that can be used for recommending new items. Most methods falling in this category exploit either user-annotated tags, acoustic features or deeply-learned features. Consequently, these content features do not have a clear musical meaning, thus they are not necessarily relevant from a musical preference perspective. In this work, we propose instead to leverage a model of musical preference which originates from the field of music psychology. From low-level acoustic features we extract three factors (arousal, valence and depth), which have been shown appropriate for describing musical taste. Then we integrate those into a collaborative filtering framework for content-aware music recommendation. Experiments conducted on large-scale data show that this approach is able to address the cold-start problem, while using a compact and meaningful set of musical features.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Paul Magron (25 papers)
  2. Cédric Févotte (36 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.