Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimistic search: Change point estimation for large-scale data via adaptive logarithmic queries (2010.10194v3)

Published 20 Oct 2020 in stat.ME, cs.LG, math.ST, stat.CO, stat.ML, and stat.TH

Abstract: Change point estimation is often formulated as a search for the maximum of a gain function describing improved fits when segmenting the data. Searching through all candidates requires $O(n)$ evaluations of the gain function for an interval with $n$ observations. If each evaluation is computationally demanding (e.g. in high-dimensional models), this can become infeasible. Instead, we propose optimistic search methods with $O(\log n)$ evaluations exploiting specific structure of the gain function. Towards solid understanding of our strategy, we investigate in detail the $p$-dimensional Gaussian changing means setup, including high-dimensional scenarios. For some of our proposals, we prove asymptotic minimax optimality for detecting change points and derive their asymptotic localization rate. These rates (up to a possible log factor) are optimal for the univariate and multivariate scenarios, and are by far the fastest in the literature under the weakest possible detection condition on the signal-to-noise ratio in the high-dimensional scenario. Computationally, our proposed methodology has the worst case complexity of $O(np)$, which can be improved to be sublinear in $n$ if some a-priori knowledge on the length of the shortest segment is available. Our search strategies generalize far beyond the theoretically analyzed setup. We illustrate, as an example, massive computational speedup in change point detection for high-dimensional Gaussian graphical models.

Citations (4)

Summary

We haven't generated a summary for this paper yet.