Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Use of neural networks for stable, accurate and physically consistent parameterization of subgrid atmospheric processes with good performance at reduced precision (2010.09947v3)

Published 20 Oct 2020 in physics.ao-ph

Abstract: A promising approach to improve climate-model simulations is to replace traditional subgrid parameterizations based on simplified physical models by machine learning algorithms that are data-driven. However, neural networks (NNs) often lead to instabilities and climate drift when coupled to an atmospheric model. Here we learn an NN parameterization from a high-resolution atmospheric simulation in an idealized domain by coarse graining the model equations and output. The NN parameterization has a structure that ensures physical constraints are respected, and it leads to stable simulations that replicate the climate of the high-resolution simulation with similar accuracy to a successful random-forest parameterization while needing far less memory. We find that the simulations are stable for a variety of NN architectures and horizontal resolutions, and that an NN with substantially reduced numerical precision could decrease computational costs without affecting the quality of simulations.

Summary

We haven't generated a summary for this paper yet.