Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MimicNorm: Weight Mean and Last BN Layer Mimic the Dynamic of Batch Normalization (2010.09278v3)

Published 19 Oct 2020 in cs.LG, cs.AI, and cs.CV

Abstract: Substantial experiments have validated the success of Batch Normalization (BN) Layer in benefiting convergence and generalization. However, BN requires extra memory and float-point calculation. Moreover, BN would be inaccurate on micro-batch, as it depends on batch statistics. In this paper, we address these problems by simplifying BN regularization while keeping two fundamental impacts of BN layers, i.e., data decorrelation and adaptive learning rate. We propose a novel normalization method, named MimicNorm, to improve the convergence and efficiency in network training. MimicNorm consists of only two light operations, including modified weight mean operations (subtract mean values from weight parameter tensor) and one BN layer before loss function (last BN layer). We leverage the neural tangent kernel (NTK) theory to prove that our weight mean operation whitens activations and transits network into the chaotic regime like BN layer, and consequently, leads to an enhanced convergence. The last BN layer provides autotuned learning rates and also improves accuracy. Experimental results show that MimicNorm achieves similar accuracy for various network structures, including ResNets and lightweight networks like ShuffleNet, with a reduction of about 20% memory consumption. The code is publicly available at https://github.com/Kid-key/MimicNorm.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Wen Fei (4 papers)
  2. Wenrui Dai (35 papers)
  3. Chenglin Li (42 papers)
  4. Junni Zou (31 papers)
  5. Hongkai Xiong (75 papers)
Citations (1)