Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Linear Forms in Polylogarithms (2010.09167v2)

Published 19 Oct 2020 in math.NT

Abstract: Let $r, \,m$ be positive integers. Let $x$ be a rational number with $0 \le x <1$. Consider $\Phi_s(x,z) =\displaystyle\sum_{k=0}{\infty}\frac{z{k+1}}{{(k+x+1)}s}$ the $s$-th Lerch function with $s=1, 2, \cdots, r$. When $x=0$, this is a polylogarithmic function. Let $\alpha_1, \cdots, \alpha_m$ be pairwise distinct algebraic numbers of arbitrary degree over the rational number field, with $0<|\alpha_j|<1 \,\,\,(1\leq j \leq m)$. In this article, we show a criterion for the linear independence, over an algebraic number field containing $\mathbb{Q}(\alpha_1, \cdots, \alpha_m)$, of all the $rm+1$ numbers : $\Phi_1(x,\alpha_1)$, $\Phi_2(x,\alpha_1), $ $\cdots , \Phi_r(x,\alpha_1)$, $\Phi_1(x,\alpha_2)$, $\Phi_2(x,\alpha_2), $ $\cdots , \Phi_r(x,\alpha_2), \cdots, \cdots, \Phi_1(x,\alpha_m)$, $\Phi_2(x,\alpha_m)$, $\cdots , \Phi_r(x,\alpha_m)$ and $1$. This is the first result that gives a sufficient condition for the linear independence of values of the Lerch functions at several distinct algebraic points, not necessarily lying in the rational number field nor in quadratic imaginary fields. We give a complete proof with refinements and quantitative statements of the main theorem announced in [10], together with a proof in detail on the non-vanishing Wronskian of Hermite type.

Summary

We haven't generated a summary for this paper yet.