Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extended Abstract: Motion Planners Learned from Geometric Hallucination (2010.09158v1)

Published 19 Oct 2020 in cs.RO

Abstract: Learning motion planners to move robot from one point to another within an obstacle-occupied space in a collision-free manner requires either an extensive amount of data or high-quality demonstrations. This requirement is caused by the fact that among the variety of maneuvers the robot can perform, it is difficult to find the single optimal plan without many trial-and-error or an expert who is already capable of doing so. However, given a plan performed in obstacle-free space, it is relatively easy to find an obstacle geometry, where this plan is optimal. We consider this "dual" problem of classical motion planning and name this process of finding appropriate obstacle geometry as hallucination. In this work, we present two different approaches to hallucinate (1) the most constrained and (2) a minimal obstacle space where a given plan executed during an exploration phase in a completely safe obstacle-free environment remains optimal. We then train an end-to-end motion planner that can produce motions to move through realistic obstacles during deployment. Both methods are tested on a physical mobile robot in real-world cluttered environments.

Summary

We haven't generated a summary for this paper yet.