Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Prediction of daily maximum ozone levels using Lasso sparse modeling method (2010.08909v1)

Published 18 Oct 2020 in cs.LG, cs.SY, and eess.SY

Abstract: This paper applies modern statistical methods in the prediction of the next-day maximum ozone concentration, as well as the maximum 8-hour-mean ozone concentration of the next day. The model uses a large number of candidate features, including the present day's hourly concentration level of various pollutants, as well as the meteorological variables of the present day's observation and the future day's forecast values. In order to solve such an ultra-high dimensional problem, the least absolute shrinkage and selection operator (Lasso) was applied. The $L_1$ nature of this methodology enables the automatic feature dimension reduction, and a resultant sparse model. The model trained by 3-years data demonstrates relatively good prediction accuracy, with RMSE= 5.63 ppb, MAE= 4.42 ppb for predicting the next-day's maximum $O_3$ concentration, and RMSE= 5.68 ppb, MAE= 4.52 ppb for predicting the next-day's maximum 8-hour-mean $O_3$ concentration. Our modeling approach is also compared with several other methods recently applied in the field and demonstrates superiority in the prediction accuracy.

Citations (1)

Summary

We haven't generated a summary for this paper yet.