Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Incorporate Semantic Structures into Machine Translation Evaluation via UCCA (2010.08728v2)

Published 17 Oct 2020 in cs.CL

Abstract: Copying mechanism has been commonly used in neural paraphrasing networks and other text generation tasks, in which some important words in the input sequence are preserved in the output sequence. Similarly, in machine translation, we notice that there are certain words or phrases appearing in all good translations of one source text, and these words tend to convey important semantic information. Therefore, in this work, we define words carrying important semantic meanings in sentences as semantic core words. Moreover, we propose an MT evaluation approach named Semantically Weighted Sentence Similarity (SWSS). It leverages the power of UCCA to identify semantic core words, and then calculates sentence similarity scores on the overlap of semantic core words. Experimental results show that SWSS can consistently improve the performance of popular MT evaluation metrics which are based on lexical similarity.

Citations (6)

Summary

We haven't generated a summary for this paper yet.