Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Consistent Feature Selection for Analytic Deep Neural Networks (2010.08097v1)

Published 16 Oct 2020 in cs.LG, math.ST, stat.ML, and stat.TH

Abstract: One of the most important steps toward interpretability and explainability of neural network models is feature selection, which aims to identify the subset of relevant features. Theoretical results in the field have mostly focused on the prediction aspect of the problem with virtually no work on feature selection consistency for deep neural networks due to the model's severe nonlinearity and unidentifiability. This lack of theoretical foundation casts doubt on the applicability of deep learning to contexts where correct interpretations of the features play a central role. In this work, we investigate the problem of feature selection for analytic deep networks. We prove that for a wide class of networks, including deep feed-forward neural networks, convolutional neural networks, and a major sub-class of residual neural networks, the Adaptive Group Lasso selection procedure with Group Lasso as the base estimator is selection-consistent. The work provides further evidence that Group Lasso might be inefficient for feature selection with neural networks and advocates the use of Adaptive Group Lasso over the popular Group Lasso.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Vu Dinh (24 papers)
  2. Lam Si Tung Ho (34 papers)
Citations (31)

Summary

We haven't generated a summary for this paper yet.