Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Does Data Augmentation Benefit from Split BatchNorms (2010.07810v1)

Published 15 Oct 2020 in cs.CV and cs.LG

Abstract: Data augmentation has emerged as a powerful technique for improving the performance of deep neural networks and led to state-of-the-art results in computer vision. However, state-of-the-art data augmentation strongly distorts training images, leading to a disparity between examples seen during training and inference. In this work, we explore a recently proposed training paradigm in order to correct for this disparity: using an auxiliary BatchNorm for the potentially out-of-distribution, strongly augmented images. Our experiments then focus on how to define the BatchNorm parameters that are used at evaluation. To eliminate the train-test disparity, we experiment with using the batch statistics defined by clean training images only, yet surprisingly find that this does not yield improvements in model performance. Instead, we investigate using BatchNorm parameters defined by weak augmentations and find that this method significantly improves the performance of common image classification benchmarks such as CIFAR-10, CIFAR-100, and ImageNet. We then explore a fundamental trade-off between accuracy and robustness coming from using different BatchNorm parameters, providing greater insight into the benefits of data augmentation on model performance.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.