Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Bitext Mining and Translation via Self-trained Contextual Embeddings (2010.07761v1)

Published 15 Oct 2020 in cs.CL and cs.LG

Abstract: We describe an unsupervised method to create pseudo-parallel corpora for machine translation (MT) from unaligned text. We use multilingual BERT to create source and target sentence embeddings for nearest-neighbor search and adapt the model via self-training. We validate our technique by extracting parallel sentence pairs on the BUCC 2017 bitext mining task and observe up to a 24.5 point increase (absolute) in F1 scores over previous unsupervised methods. We then improve an XLM-based unsupervised neural MT system pre-trained on Wikipedia by supplementing it with pseudo-parallel text mined from the same corpus, boosting unsupervised translation performance by up to 3.5 BLEU on the WMT'14 French-English and WMT'16 German-English tasks and outperforming the previous state-of-the-art. Finally, we enrich the IWSLT'15 English-Vietnamese corpus with pseudo-parallel Wikipedia sentence pairs, yielding a 1.2 BLEU improvement on the low-resource MT task. We demonstrate that unsupervised bitext mining is an effective way of augmenting MT datasets and complements existing techniques like initializing with pre-trained contextual embeddings.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Phillip Keung (11 papers)
  2. Julian Salazar (17 papers)
  3. Yichao Lu (22 papers)
  4. Noah A. Smith (224 papers)
Citations (25)