Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Evasion Attack against Stacked Capsule Autoencoder (2010.07230v5)

Published 14 Oct 2020 in cs.LG and cs.CR

Abstract: Capsule network is a type of neural network that uses the spatial relationship between features to classify images. By capturing the poses and relative positions between features, its ability to recognize affine transformation is improved, and it surpasses traditional convolutional neural networks (CNNs) when handling translation, rotation and scaling. The Stacked Capsule Autoencoder (SCAE) is the state-of-the-art capsule network. The SCAE encodes an image as capsules, each of which contains poses of features and their correlations. The encoded contents are then input into the downstream classifier to predict the categories of the images. Existing research mainly focuses on the security of capsule networks with dynamic routing or EM routing, and little attention has been given to the security and robustness of the SCAE. In this paper, we propose an evasion attack against the SCAE. After a perturbation is generated based on the output of the object capsules in the model, it is added to an image to reduce the contribution of the object capsules related to the original category of the image so that the perturbed image will be misclassified. We evaluate the attack using an image classification experiment, and the experimental results indicate that the attack can achieve high success rates and stealthiness. It confirms that the SCAE has a security vulnerability whereby it is possible to craft adversarial samples without changing the original structure of the image to fool the classifiers. We hope that our work will make the community aware of the threat of this attack and raise the attention given to the SCAE's security.

Citations (1)

Summary

We haven't generated a summary for this paper yet.