Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Explain2Attack: Text Adversarial Attacks via Cross-Domain Interpretability (2010.06812v4)

Published 14 Oct 2020 in cs.LG and cs.CR

Abstract: Training robust deep learning models for down-stream tasks is a critical challenge. Research has shown that down-stream models can be easily fooled with adversarial inputs that look like the training data, but slightly perturbed, in a way imperceptible to humans. Understanding the behavior of natural LLMs under these attacks is crucial to better defend these models against such attacks. In the black-box attack setting, where no access to model parameters is available, the attacker can only query the output information from the targeted model to craft a successful attack. Current black-box state-of-the-art models are costly in both computational complexity and number of queries needed to craft successful adversarial examples. For real world scenarios, the number of queries is critical, where less queries are desired to avoid suspicion towards an attacking agent. In this paper, we propose Explain2Attack, a black-box adversarial attack on text classification task. Instead of searching for important words to be perturbed by querying the target model, Explain2Attack employs an interpretable substitute model from a similar domain to learn word importance scores. We show that our framework either achieves or out-performs attack rates of the state-of-the-art models, yet with lower queries cost and higher efficiency.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Mahmoud Hossam (6 papers)
  2. Trung Le (94 papers)
  3. He Zhao (117 papers)
  4. Dinh Phung (147 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.