Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Homomorphisms of Fourier-Stieltjes algebras (2010.06650v1)

Published 13 Oct 2020 in math.FA and math.OA

Abstract: Every homomorphism $\varphi: B(G) \rightarrow B(H)$ between Fourier-Stieltjes algebras on locally compact groups $G$ and $H$ is determined by a continuous mapping $\alpha: Y \rightarrow \Delta(B(G))$, where $Y$ is a set in the open coset ring of $H$ and $\Delta(B(G))$ is the Gelfand spectrum of $B(G)$ (a $*$-semigroup). We exhibit a large collection of maps $\alpha$ for which $\varphi=j_\alpha: B(G) \rightarrow B(H)$ is a completely positive/completely contractive/completely bounded homomorphism and establish converse statements in several instances. For example, we fully characterize all completely positive/completely contractive/completely bounded homomorphisms $\varphi: B(G) \rightarrow B(H)$ when $G$ is a Euclidean- or $p$-adic-motion group. In these cases, our description of the completely positive/completely contractive homomorphisms employs the notion of a "fusion map of a compatible system of homomorphisms/affine maps" and is quite different from the Fourier algebra situation.

Summary

We haven't generated a summary for this paper yet.