Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Temporal Collaborative Filtering with Graph Convolutional Neural Networks (2010.06425v1)

Published 13 Oct 2020 in cs.AI

Abstract: Temporal collaborative filtering (TCF) methods aim at modelling non-static aspects behind recommender systems, such as the dynamics in users' preferences and social trends around items. State-of-the-art TCF methods employ recurrent neural networks (RNNs) to model such aspects. These methods deploy matrix-factorization-based (MF-based) approaches to learn the user and item representations. Recently, graph-neural-network-based (GNN-based) approaches have shown improved performance in providing accurate recommendations over traditional MF-based approaches in non-temporal CF settings. Motivated by this, we propose a novel TCF method that leverages GNNs to learn user and item representations, and RNNs to model their temporal dynamics. A challenge with this method lies in the increased data sparsity, which negatively impacts obtaining meaningful quality representations with GNNs. To overcome this challenge, we train a GNN model at each time step using a set of observed interactions accumulated time-wise. Comprehensive experiments on real-world data show the improved performance obtained by our method over several state-of-the-art temporal and non-temporal CF models.

Citations (6)

Summary

We haven't generated a summary for this paper yet.