Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gradient Descent Ascent for Minimax Problems on Riemannian Manifolds (2010.06097v5)

Published 13 Oct 2020 in cs.LG, cs.CV, and math.OC

Abstract: In the paper, we study a class of useful minimax problems on Riemanian manifolds and propose a class of effective Riemanian gradient-based methods to solve these minimax problems. Specifically, we propose an effective Riemannian gradient descent ascent (RGDA) algorithm for the deterministic minimax optimization. Moreover, we prove that our RGDA has a sample complexity of $O(\kappa2\epsilon{-2})$ for finding an $\epsilon$-stationary solution of the Geodesically-Nonconvex Strongly-Concave (GNSC) minimax problems, where $\kappa$ denotes the condition number. At the same time, we present an effective Riemannian stochastic gradient descent ascent (RSGDA) algorithm for the stochastic minimax optimization, which has a sample complexity of $O(\kappa4\epsilon{-4})$ for finding an $\epsilon$-stationary solution. To further reduce the sample complexity, we propose an accelerated Riemannian stochastic gradient descent ascent (Acc-RSGDA) algorithm based on the momentum-based variance-reduced technique. We prove that our Acc-RSGDA algorithm achieves a lower sample complexity of $\tilde{O}(\kappa{4}\epsilon{-3})$ in searching for an $\epsilon$-stationary solution of the GNSC minimax problems. Extensive experimental results on the robust distributional optimization and robust Deep Neural Networks (DNNs) training over Stiefel manifold demonstrate efficiency of our algorithms.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Feihu Huang (34 papers)
  2. Shangqian Gao (24 papers)
Citations (24)

Summary

We haven't generated a summary for this paper yet.