Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Extension of the Birkhoff-von Neumann Theorem to Non-Bipartite Graphs (2010.05984v2)

Published 12 Oct 2020 in cs.DS and econ.TH

Abstract: We prove that a fractional perfect matching in a non-bipartite graph can be written, in polynomial time, as a convex combination of perfect matchings. This extends the Birkhoff-von Neumann Theorem from bipartite to non-bipartite graphs. The algorithm of Birkhoff and von Neumann is greedy; it starts with the given fractional perfect matching and successively "removes" from it perfect matchings, with appropriate coefficients. This fails in non-bipartite graphs -- removing perfect matchings arbitrarily can lead to a graph that is non-empty but has no perfect matchings. Using odd cuts appropriately saves the day.

Citations (1)

Summary

We haven't generated a summary for this paper yet.