Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the periodic Navier--Stokes equation: An elementary approach to existence and smoothness for all dimensions $n\geq 2$ (2010.05579v4)

Published 12 Oct 2020 in math.AP

Abstract: In this paper we study the periodic Navier--Stokes equation. From the periodic Navier--Stokes equation and the linear equation $\partial_t u = \nu\Delta u + \mathbb{P} [v\nabla u]$ we derive the corresponding equations for the time dependent Fourier coefficients $a_k(t)$. We prove the existence of a unique smooth solution $u$ of the linear equation by a Montel space version of Arzel`a--Ascoli. We gain bounds on the $a_k$'s of $u$ depending on $v$. With $v = -u$ these bounds show that a unique smooth solution $u$ of the $n$-dimensional periodic Navier--Stokes equation exists for all $t\in [0,T*)$ with $T* \geq 2\nu\cdot |u_0|{\mathsf{A},0}{-2}$. $|u_0|{\mathsf{A},0}$ is the sum of the $l2$-norms of the Fourier coefficients without $e{i\cdot 0\cdot x}$ of the initial data $u_0\in C\infty(\mathbb{T}n,\mathbb{R}n)$ with $\mathrm{div}\, u_0=0$. For $|u_0|_{\mathsf{A},0} \leq \nu$ (small initial data) we get $T* = \infty$. All results hold for all dimensions $n\geq 2$ and are independent on $n$.

Summary

We haven't generated a summary for this paper yet.