Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Genetic Bi-objective Optimization Approach to Habitability Score (2010.05494v1)

Published 12 Oct 2020 in cs.NE and cs.LG

Abstract: The search for life outside the Solar System is an endeavour of astronomers all around the world. With hundreds of exoplanets being discovered due to advances in astronomy, there is a need to classify the habitability of these exoplanets. This is typically done using various metrics such as the Earth Similarity Index or the Planetary Habitability Index. In this paper, Genetic Algorithms are used to evaluate the best possible habitability scores using the Cobb-Douglas Habitability Score. Genetic Algorithm is a classic evolutionary algorithm used for solving optimization problems. It is based on Darwin's theory of evolution, "Survival of the fittest". The working of the algorithm is established through comparison with various benchmark functions and extended its functionality to Multi-Objective optimization. The Cobb-Douglas Habitability Function is formulated as a bi-objective as well as a single objective optimization problem to find the optimal values to maximize the Cobb-Douglas Habitability Score for a set of promising exoplanets.

Summary

We haven't generated a summary for this paper yet.