Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic integration with respect to cylindrical semimartingales (2010.05292v2)

Published 11 Oct 2020 in math.PR and math.FA

Abstract: In this work we introduce a theory of stochastic integration with respect to general cylindrical semimartingales defined on a locally convex space $\Phi$. Our construction of the stochastic integral is based on the theory of tensor products of topological vector spaces and the property of good integrators of real-valued semimartingales. This theory is further developed in the case where $\Phi$ is a complete, barrelled, nuclear space, where we obtain a complete description of the class of integrands as $\Phi$-valued locally bounded and weakly predictable processes. Several other properties of the stochastic integral are proven, including a Riemann representation, a stochastic integration by parts formula and a stochastic Fubini theorem. Our theory is then applied to provide sufficient and necessary conditions for existence and uniqueness of solutions to linear stochastic evolution equations driven by semimartingale noise taking values in the strong dual $\Phi'$ of $\Phi$. In the last part of this article we apply our theory to define stochastic integrals with respect to a sequence of real-valued semimartingales.

Summary

We haven't generated a summary for this paper yet.