Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A kernel-independent sum-of-Gaussians method by de la Vallée-Poussin sums (2010.05192v2)

Published 11 Oct 2020 in math.NA, cs.NA, and physics.comp-ph

Abstract: Approximation of interacting kernels by sum of Gaussians (SOG) is frequently required in many applications of scientific and engineering computing in order to construct efficient algorithms for kernel summation or convolution problems. In this paper, we propose a kernel-independent SOG method by introducing the de la Vall\'ee-Poussin sum and Chebyshev polynomials. The SOG works for general interacting kernels and the lower bound of Gaussian bandwidths is tunable and thus the Gaussians can be easily summed by fast Gaussian algorithms. The number of Gaussians can be further reduced via the model reduction based on the balanced truncation based on the square root method. Numerical results on the accuracy and model reduction efficiency show attractive performance of the proposed method.

Citations (4)

Summary

We haven't generated a summary for this paper yet.